Modulation of in vitro and in vivo T-cell responses by transferrin-gallium and gallium nitrate.

نویسندگان

  • W R Drobyski
  • R Ul-Haq
  • D Majewski
  • C R Chitambar
چکیده

Gallium is a group IIIa metal that has efficacy in the therapy of malignant disorders such as lymphoma and urothelial tract tumors. Preclinical studies also indicate a role for gallium in autoimmune disorders, suggesting that gallium is able to modulate T-cell immune reactivity. The purpose of this study was to examine the in vitro and in vivo immunomodulatory action of gallium on T-cell function. Since gallium binds to transferrin in vivo, in vitro studies evaluated the effect of transferrin-gallium (Tf-Ga) on human T cells. Tf-Ga inhibited the mitogen-induced proliferative response of peripheral blood mononuclear cells (PBMC) in a dose-dependent fashion. Alloantigen-induced proliferation was also potently suppressed when evaluated in a mixed lymphocyte culture assay. Tf-Ga affected a significant reduction in the density of IL-2 receptors on activated T cells and a slight reduction in the number of CD3+/CD25+ T cells in PHA-stimulated cultures. Neither secretion of interleukin-2 (IL-2) nor the induction of IL-2-stimulated lymphokine-activated killer activity, however, was inhibited by Tf-Ga. Tf-Ga produced significant upregulation of the transferrin receptor (CD71) in T cells as determined by flow cytometric analysis and northern blot assay, but did not affect the percentage of CD3+/ CD71+ T cells after mitogen stimulation. To assess the in vivo effects of gallium on alloreactive T cells, we evaluated the immunosuppressive effect of gallium in a murine model of graft-versus-host disease (GVHD). Administration of gallium significantly prolonged survival in mice undergoing severe GVHD, suggesting that gallium can ameliorate GVH reactivity. Collectively, these data demonstrate that, at clinically achievable concentrations, Tf-Ga potently inhibits T-cell activation and that this immunosuppressive property of gallium may be of adjunctive therapeutic value in the management of disorders characterized by the presence of autoreactive or alloreactive T-cell populations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of transferrin and gallium-pyridoxal isonicotinoyl hydrazone as potential therapeutic agents to overcome lymphoid leukemic cell resistance to gallium nitrate.

Gallium nitrate is active against lymphoma and bladder cancer; however, little is understood about tumor resistance to this drug. Transferrin, the iron transport protein, increases gallium uptake by cells, whereas pyridoxal isonicotinoyl hydrazone (PIH), an iron chelator, transports iron into cells. Therefore, we examined whether these metal transporters would increase the cytotoxicity of galli...

متن کامل

Evaluation of Transferrin and Gallium-Pyridoxal Isonicotinoyl Hydrazone as Potential Therapeutic Agents to Overcome Lymphoid Leukemic Cell Resistance to Gallium Nitrate1

Gallium nitrate is active against lymphoma and bladder cancer; however, little is understood about tumor resistance to this drug. Transferrin, the iron transport protein, increases gallium uptake by cells, whereas pyridoxal isonicotinoyl hydrazone (PIH), an iron chelator, transports iron into cells. Therefore, we examined whether these metal transporters would increase the cytotoxicity of galli...

متن کامل

Differential growth-inhibitory effects of gallium on B-lymphocyte lines in high versus low iron concentrations.

The growth inhibitory effects of gallium on a murine and human B-cell line were studied using two different serum-free culture systems: (a) ferric citrate medium containing 500 microM iron and (b) transferrin medium containing 5 micrograms/ml of iron-saturated transferrin (0.125 microM iron). For the human cell line in ferric citrate medium, 50% growth inhibition achieved in the presence of tra...

متن کامل

Regulatory effects of gallium on transferrin-independent iron uptake by human leukemic HL60 cells.

Gallium, a pharmacologically important metal, resembles iron with respect to transferrin (Tf) binding and Tf receptor-mediated cellular uptake. In the present study, we examined the effect of gallium on Tf-independent iron uptake by HL60 cells. In contrast to the inhibitory effect of Tf-gallium on Tf-iron uptake, gallium nitrate, in a time-, temperature-, and concentration-dependent manner, sti...

متن کامل

Development of Drug Resistance to Gallium Nitrate through Modulation of Cellular Iron Uptake1

We have shown that transferrin-gallium (Tf-Ga) blocks DNA synthe sis through inhibition of cellular iron incorporation and a diminution in the activity of the iron-dependent M2 subunit of ribonucleotide reductase. To examine the mechanisms of drug resistance to gallium, we developed a subline of HL60 cells (R cells) which is 29-fold more resistant to growth inhibition by gallium nitrate than th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Blood

دوره 88 8  شماره 

صفحات  -

تاریخ انتشار 1996